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Abstract 

Model checking is a proven successful technology for verifying hardware. It works, however, on 
only finite state machines, and most software systems have infinitely many states. Our approach 
to applying model checking to software hinges on identifying appropriate abstractions that exploit 
the nature of both the system, S, and the property, <ß, to be verified. We check <£ on an abstracted, 
but finite, model of S. 
Following this approach we verified three cache coherence protocols used in distributed file systems. 
These protocols have to satisfy this property: "If a client believes that a cached file is valid then 
the authorized server believes that the client's copy is valid." In our finite model of the system, 
we need only represent the "beliefs" that a client and a server have about a cached file; we can 
abstract from the caches, the files' contents, and even the files themselves. Moreover, by successive 
application of the generalization rule from predicate logic, we need only consider a model with at 
most two clients, one server, and one file. We used McMillan's SMV model checker; on our most 
complicated protocol, SMV took less than 1 second to check over 43,600 reachable states. 



1.     Motivation: Theorem Proving and Model Checking 

Software systems keep growing in size and complexity. Many large, complex software systems must 
guarantee certain critical functional, real-time, fault-tolerant, and performance properties. Proving 
that such a system satisfies these kinds of properties can increase our confidence that it will operate 
correctly and reliably. Proofs based on formal, rather than informal, techniques make our reasoning 
precise; moreover, they are amenable to mechanical aids such as syntax and semantics checkers. 

Formal reasoning entails comparing two formal objects, e.g., establishing the correctness of a 
program with respect to a specification or showing that one concurrent process simulates another. 
The starting point is having two formal objects. There are two general approaches to showing the 
correspondence between these two objects: theorem proving and model checking. We argue that 
model checking should and will play a larger role in reasoning about software systems than it does 
today. 

The traditional approach to formal reasoning about software is program verification where one 
formal object is the program text and the other is a specification written in some mathematical 
logic. The formal technique used to show a correspondence between the two objects is based on 
theorem proving. Over time this approach has been shown to work on increasingly larger and larger 
programs, especially as the tool support like theorem provers and proof checkers has become more 
and more sophisticated. Yet, it still has drawbacks: 

• The size of a program we can prove correct is on the order of only a couple thousand lines of 
code [13]. 

• To do such a proof requires highly-skilled people, such as theorem-proving experts, domain 
experts, or both. 

• The human time to do such a proof is on the order of months or even years; the machine 
time, on the order of hours [13]. 

• In the course of such a proof, we are often forced to prove "obvious" or "uninteresting" 
theorems; the amount of effort to prove them is often the same as that for proving the 
"essential" property of interest. 

We believe that there is a time and place for program verification, e.g., for key components of 
a safety-critical system. In this paper, however, we directly address the concerns of the vast 
majority of the software engineering community, which questions whether the cost in time, effort, 
and resources for program verification is worth the eventual benefit gained. 

We suggest a radically different tack: model checking. The two formal objects compared are a 
finite state machine model of the software system, and as before, a specification written in some 
mathematical logic. 

Model checking is a proven successful verification technology in the hardware community. For 
example, it has been used to find bugs in published circuits [4, 14], the cache coherence protocol 
for the Encore Gigamax multiprocessor [23], the IEEE Futurebus+ Standard [9], and telephone 
switching systems [15]. It has been used to prove safety and liveness properties of the T9000 virtual 
channel processor [3]. 



Fundamental to model checking is its reliance on finite state machines. Model checking exploits 
this finiteness property by performing an exhaustive case analysis of the machine's set of states. 
Recent technological advances have greatly improved the ability to apply this technique to real 
systems: model checkers can now check systems on the order of 10120 states, and for some systems 
this number can be as large as 101300 [10]. 

The rationale behind why theorem proving has been the primary approach for reasoning about 
software is that software systems are, in general, infinite state machines. We thus rely on induction 

to prove in a finite number of steps a property over infinite domains. Model checking, at first 
glance, seems inappropriate. 

There are three methodological reasons for why model checking is appropriate. First, the 
inductive arguments used in proof work well for highly structured components (e.g., generic data 
types like sets and mappings), but fail at the system level, because of discontinuities in value spaces 
and irregularities in software structure. We are forced to resort to huge case analyses anyway, 
perhaps with inductive proofs performed only locally. Thus, though it may seem restrictive to use 
model checking because we cannot prove something about all possible values drawn from an infinite 
domain, it is exactly the kind of technology needed to handle the huge case analyses at the system 
level. 

Second, checking a model of the system rather than the system itself raises the level of abstrac- 
tion at which we do our formal reasoning. Though, we may fall short of doing "exact" reasoning 
about the original system, we can more quickly, with less effort, and completely automatically do 
"approximate" reasoning. (An argument must be made, of course, that the model checked is not 
so abstract that it trivially satisfies the property of interest.) 

Finally, as the hardware community has discovered, model checking has been tremendously 
successful at finding bugs in hardware designs. It is more common to find that a system has errors 
than that it is correct. The same is true, if not more so, for software. Thus, model checking can 
help software designers find bugs in their designs, where a design is a natural abstraction of the 
actual working system. Moreover, if the goal of formal reasoning is to find bugs, then it matters 
less that we do only "approximate," rather than "exact," reasoning. 

Thus, though theorem proving has its place, e.g., for doing inductive arguments and low-level 
program verification, model checking can complement theorem proving efforts. It is worth exploring 
all avenues as to how. 

We present the gist of our approach in Section 2. We give details of a case study in Section 
3; we used model checking to verify three cache coherence protocols for distributed file systems: 
two implemented for the Andrew File System (AFS) and one for the Coda File System. In Section 
4, we use the case study to illustrate how we followed our approach; we explain different kinds of 
specific abstractions that software engineers can in general apply to their systems to produce finite 
state machine models. We close with related work and conclusions. 
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Figure 1: Model Checking Software 

2.     One Approach: Finding Good Abstractions 

The successes in reasoning about hardware systems raise the obvious question: How can model 
checking be applied to reasoning about software systems? In this paper, we elaborate on this answer: 

Approach: Model check a finite state machine abstraction of a software system. 

This approach (see Figure 1) relies on finding mappings, A, to apply to a possibly infinite state 
machine, S, and then subjecting the abstract model, M, to a model checker. We use a model 
checker as a black box to check M against the specification, <j>. The model checker outputs either 

true, if M satisfies cj>, or a counterexample, if it does not. 

Key to our approach is to exploit the nature of <j> to determine what abstractions are reasonable 
to define and apply. Based on our case study, we broadly classify the ones we identified as follows 

(elaborated on in Section 4): 

• Exploiting the form of <f>. In our example, because of the form of our correctness condition, 
we use the generalization rule of first-order logic to justify that checking a finite case suffices 

to show that <f> holds for the infinite case. 

• Exploiting domain-specific knowledge. In our distributed systems domain, we collapse dis- 
tinct failures like crashed nodes and links into a single type of failure. Also, we place a bound 
on transmission delay, and furthermore model it as a single step taken by the system's envi- 
ronment. Both abstractions are reasonable since implementors of distributed systems make 

similar simplifications. 

• Exploiting problem-specific knowledge. <fi might express an abstract property about an object, 
not its value. For example, suppose <$> is a property about the size of a bounded integer set; 



we do not care about the value of the set itself.  If the bound is small, we can model each 
possible size. 

The first kind of abstraction can be applied to any problem or domain. The second can be 
applied when considering any problem for distributed systems since failures and timing behavior 
cannot be completely ignored in those systems. The third class of abstractions, though particularly 
appropriate for our case study, are just examples of abstractions that are generally applicable to 
other problems. All can be viewed as software design rules ("-of-thumb") that when applied raise 
the level at which we can think about the essence of a software system. 

3.     Case Study: Cache Coherence Protocols for Distributed File Systems 

In a distributed file system, servers store files; clients store local copies of these files in their 
caches. Caching increases performance at the client when connectivity and bandwidth are low, 
and increases availability and reliability when temporary failures occur. Clients communicate with 
servers by exchanging messages and data (e.g., files). Clients do not communicate with each other. 
Each file is associated with exactly one designated "home" or authorized server. 

A problem arises when there are several copies of a file in a system. A file is valid if it is the 
most recent copy in the system. Recency is typically determined by a timestamp associated with 
the file. If a client updates its copy and it is the most recent update in the system, then all other 
copies of that file become invalid. The goal of a cache coherence protocol is to make sure a client 
performs work on only files it believes are valid. 

There are two ways to ensure cache coherence. Either the client asks the server whether its 
copy is valid (validation-based) or the server tells the client when the client's copy is no longer 
valid (invalidation-based). A cache coherence protocol defines a set of possible runs, i.e., message 
exchanges, between clients and servers about files. Before a run a client considers all files in its 
cache suspect, which means that it does not have a belief on their validity. During a run clients 
and servers gain beliefs about cached files. At the end of the run, they all discard all their beliefs. 
If failures occur, beliefs are discarded but clients do not discard their cached files. Failures are 
detected by message timeouts. 

Cache coherence in a distributed system is more difficult to achieve than on a multiprocessor 
because of the presence of failures and transmission delay. Thus, since global knowledge is impos- 
sible to achieve in a distributed system [18], we settle for pairwise knowledge between clients and 
servers. Our notion of belief captures this pairwise knowledge   [25]. 

An invariant property to prove of all cache coherence protocols is that if a client believes that 
a cached file is valid, then the server that is the authority on the file believes the client's copy is 
valid. More formally, 

CC: V C : client . V S : server . V / : file . C believes valid(fo) =>•  S believes valid(fc) 

where fc stands for the copy of / at C [25]. 



A validation-based technique, AFS-1, was used in the Andrew File System from 1984-1985 [27]; 
for performance reasons, an invalidation-based technique, AFS-2, replaced AFS-1 and has been 
in use in Andrew since 1985 [20]. In 1993 Mummert, as part of her Ph.D. thesis work, started 
implementing a more complicated invalidation-based cache coherence protocol [24], similar to AFS- 
2, as a variation for the Coda Distributed File System [28]. It was this work that inspired our initial 
investigation of this case study since Mummert wanted a way to prove formally that her protocol 
design was correct. Inspired by the logic of authentication [6], Mummert et al. [25] formalized the 
notions of belief and validity, as used above, and applied the extended logic to reason about cache 
coherence for AFS-1, AFS-2, and Mummert's variation of Coda's protocol. The actual proofs were 
done by hand. We observed, however, that the state machine models for all protocols described 
in [25] are finite and small—trivial for a model checker. So to complete the formal analysis, we 
subjected all three protocols to model checking. 

In this section, we present the details of how we used McMillan's SMV model checker to verify 
the AFS-1 and AFS-2 protocols. They are small enough to present in their entirety but "big" 
enough to let us illustrate common abstractions others can apply to their own systems. We only 
briefly present the results of the more complicated Coda example; see [29] for details. We give 
SMV input and output for each example. SMV expects input specifications (<f) of Figure 1) in the 
form of Computational Tree Logic (CTL), a subset of branching time temporal logic. We explain 
SMV and CTL as needed in the examples. 

3.1.     AFS-1 

In AFS-1, a client has two initial states: either it has no files or it has one or more files but no 
beliefs about their validity. If the protocol starts with the client having no file in its cache, then 
the client may request a copy from the server and the protocol terminates when the file is received. 
If the protocol starts with the client having suspect files, then the client may request a validation 
for a file from the server. If the file is invalid then the client requests a new copy and the run 
terminates. If the file is valid, the protocol simply terminates. 

3.1.1.     State Machine Model 

Let's consider a simplified model with just one client, one server, and one file. The top graph 
in Figure 2 shows the state transition graphs for the client, and the bottom, for the server. The 
nodes are labeled by the value for the state variable, belief; the arcs, by the name of the message 
received that causes the state transition. A run of the protocol begins in an initial state (one of 
the leftmost nodes) and ends in a final state (one of the rightmost nodes). 

The client's belief about a file ranges over { nof ile, valid, invalid, suspect }. The client's 
belief is nof ile if the client cache is empty; valid, if the client believes its cached file is valid; 
invalid if it believes its cached file is not valid; suspect, if it has no belief about the validity of 
the file (it could be valid or invalid). 

The server's belief about the file cached by the client ranges over { valid, invalid, none }. 
The server's belief is valid if the server believes that the file cached at the client is valid; invalid, 
if the server believes it is not valid; none, if the server has no belief about the existence of the file 



Client 

Server 

fetch 

validate 
& !valid_file 

Figure 2: State Transition Graphs for AFS-1 

in the client's cache or its validity. 

The set of messages that the client may send to the server is { fetch, validate }. The message 
fetch stands for a request for the file. The validate message is used by the client to determine 

the validity of the file in its cache. 

The set of messages that the server may send to the client is { val, inval }. The server sends 
the val (inval) message to indicate to the client that its cached file is valid (invalid). 

3.1.2. Specification of Cache Coherence in CTL 

Given the state variables for a client state machine, Client, and a server state machine, Server, we 

can express CC as the following CTL formula: 

AG  ((Client.belief = valid )  ->  (Server.belief = valid)) 

CTL formula are interpreted with respect to an infinite computation tree derived from the state 
transition graphs. AG is the operator that stands for "for all paths (A) for all states (G)." Thus AG 

P says "invariably, everywhere P." 

3.1.3. SMV Input for AFS-1 

The SMV input program for AFS-1, shown in Figure 3, is a textual representation of the state tran- 
sition graphs of Figure 2. We show it for completeness. The fifth line gives the CTL specification 

against which the state machine is checked. 



To show how SMV finds counterexamples, we add in the sixth line another CTL specification 
for SMV to check, the converse of our correctness condition: 

AG  ((Server.belief = valid)  ->  (Client.belief = valid)) 

The SMV input program is composed of the modules main, server, and client. The third and 
fourth lines declare instances of the server and client modules. 

The module server takes a parameter input that can be any message coming from the client, 
indicated by the instantiation of the parameter by Client.out in the fourth line. The server 
module has two other state variables besides belief. The out variable ranges over the messages 
that the server may send to the client; the 0 message stands for no message and is needed to 
model the initial state. The valid-file boolean variable models the effect of the environment as 
perceived by the server. It is used when the client has a suspect file in its cache and requests a 
validation from the server. We need to model both the possibility that the server has received an 
update by some other client and the possibility that it has not. If an update by some other client 
has occurred then the server reflects that by nondeterministically setting the value of valid-file 
to 0; otherwise, the server sets the value to 1 (the file cached at the client is still valid). The initial 
belief of the server is none; the final belief is valid. 

In the module client, in addition to the state variable belief, as for the server, we use the out 
variable to range over the messages that the client may send to the server. The client's initial belief 
is nof ile or suspect. If the initial belief is suspect and a failed validation message is recieved, 
then the client believes its file is invalid. It then sends a fetch message to the server, as indicated 
in the definition of the transitions for out. The client's final belief is valid. 

3.1.4.     SMV Output for AFS-1 

Figure 4 shows the output of SMV for AFS-1. 

SMV indicates that (1) the first property, the cache coherence invariant, is true and (2) the 
second property, the converse, is false. The counterexample SMV finds corresponds to the following 
scenario. Initially, the client has no file and the server has no beliefs. The client then requests a 
copy from the server. Then, the server receives this fetch request and sends a copy to the client, 
believing, of course, that the file sent and thus cached by the client is valid. Thus, the server 
believes the file is valid, but in this last state, the client has not received the server's message and 
still believes that it has no file. The line after resources used: says that SMV takes fractions 
of a second to check both properties and the last line says that the number of reachable states for 
AFS-1 is 26. 

3.2.     AFS-2 

In AFS-2, clients can update their files and failures must be handled explicitly. The protocol is 
based on callbacks. When a client caches a valid file, the server promises to notify that client if the 
file is updated. This promise is called a callback [20]. 
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MODULE main 

VAR 
Client 

Server 

afsl 

client (Server.out); 
server (Client.out); 

SPEC AG ((Client.belief = valid) -> 
SPEC AG ((Server.belief = valid) -> 

MODULE server(input) 

VAR 
{ 0, val, inval }; 
{ none, valid,invalid }; 

boolean; 

(Server.belief = valid)) 
(Client.belief = valid)) 

fetch) : val; 
validate) & valid-file : 

none) & (input = validate) & !valid-file 

invalid) & (input = fetch) : val; 

none) & (input 
none) & (input 

out 
belief 
valid-file 

ASSIGN 
valid-file := { 0,1 }; 
init(belief) :=none; 
next(belief) := 

case 
(belief = none) & (input = fetch) : valid; 
(belief = none) & (input = validate) & valid-file 
(belief = none) & (input = validate) & !valid-file 

(belief = invalid) & (input = fetch) : valid; 

1 : belief; 

esac; 
init(out) := 0; 
next(out) := 

case 
(belief 

(belief 
(belief 
(belief 
1 : 0; 

esac; 
MODULE client(input) 

VAR 
out : {0, fetch, validate}; 
belief : {valid, invalid, suspect, nofile}; 

ASSIGN 
init(belief) := nofile, suspect; 

next(belief) := 

case 
(belief = nofile) & (input = val) : valid; 
(belief = suspect) & (input = val) : valid; 
(belief = suspect) & (input = inval) : invalid; 

(belief = invalid) & (input = val) : valid; 

1: belief; 
esac; 

init(out) := 0; 

next(out) := 

case 
(belief 
(belief 

valid; 
: invalid; 

val; 
: inval; 

nofile) : 
invalid) 

(belief = suspect) 

1 : 0; 
esac; 

fetch; 

: fetch; 
: validate; 

  O. PKlf T-.   r__ A mo 



— specification AG (Client.belief = valid -> Server.beli... is true 

— specification AG (Server.belief = valid -> Client.beli... is false 

— as demonstrated by the following execution sequence 

state 1.1: 
Client.out = 0 

Client.belief = nofile 

Server.out = 0 
Server.belief = none 
Server.valid-file = 0 

state  1.2: 
Client.out = fetch 

state 1.3: 
Server.out = val 
Server.belief = valid 

resources used: 
user time:   0.133333 s,   system time:   0.116667 s 
BDD nodes  allocated:   1048 
Bytes allocated:  917504 
BDD nodes representing transition relation:   112 + 1 
reachable states:   26  (2~ 4.70044)   out  of 216  (2*  7.75489) 

Figure 4: SMV Output for AFS-1 

AFS-2 works as follows. Initially, a client may have one of two beliefs about a file. It either 
believes it has no copy of the file or it has a suspect copy. If the client's initial belief is that it has 
no file, the client may request a copy from the server. The server then has a callback on that file. 
If the file is ever updated, the server notifies the client and the client discards its copy. If client's 
initial belief is that there is a suspect file in its cache, the client may request a validation from 
the server. If the file is valid, then the server has a callback on that file. If the file is invalid, the 
client discards its copy. If at any time during a run a failure occurs in the system, the clients then 
consider their copies of the file suspect and the server discards its beliefs about the validity of the 

files cached by the clients. 

3.2.1.     State Machine Models 

For AFS-2, we also consider a simplified model with just one server, two identical clients (Client 1 
and Client2), and one file. Figure 5 gives the state transition graphs for each client and the server. 

The client's belief about a file ranges over { valid, suspect, nofile }. The belief valid 
indicates that the file is in cache and it is valid; suspect, that the file is in cache but the client has 
no bebef about its validity; nofile, that there is no file in cache. Since a file that is believed to be 
invalid is immediately discarded by the clients, we have chosen not to represent the belief invalid 

to simplify the system. 

For each client, the server has a belief about the validity of the file cached by that client. Each 
belief ranges over { valid, nocall }, where valid indicates that there is a file in the client's cache 
and it is valid; nocall, that the server has no callback on the file cached by a client. 



Client 

Server valid 

validate & valid file = 1 

Figure 5: State Transition Graphs for AFS-2 

The messages that the clients may send to the server are { fetch, validate, update }. An 
update message to the server indicates that the file cached by the client has been updated. The 

server's messages are the same as for AFS-1. 

3.2.2.     SMV Input and Output for AFS-2 

If we use the same correctness criterion for AFS-2 as we did for AFS-1, SMV gives a counterexample 
(Figure 8 in Appendix I). Our "invariant" is not an invariant! The reason is that the cache coherence 
invariant holds for AFS-2 only within certain timing constraints due to transmission delay. Consider 
the following scenario, indicated by the counterexample. Client 1 has a valid file in its cache and 
the server has a callback on that file. Client2 suddenly updates its copy of the file. Then the server 
immediately believes that the file cached by Clientl is not valid and sends a message to Clientl to 
notify it. In this state, Clientl has not yet received the server's message and it still believes that 
its file is valid. So there is a period of time due to transmission delay during which the invariant 
does not hold. Let r represent the upper bound on this time interval, then the following property 

is true: 

CC: If a client believes its file is valid at the present, then in the past interval of 
time of length r, the server believes the file cached by that client is valid. 

In CTL, there are operators about the future, not the past, so we reformulate this property using 
its contrapositive. We also model the transmission delay by the amount of time it takes to go from 
one state to another, i.e., a single step. This leads us to the following CTL formula, which is the 

cache coherence condition we use for AFS-2: 

AG  ((Server.belief 1 = nocall)  -> 
AX  ((Clientl.belief = nofile)   |   (Clientl.belief = suspect))) 

10 



where AX means 'invariably, in the next state'. 

Figure 6 in Appendix I gives the SMV input for AFS-2 where line 7 states CC. The system 
consists of the instances Client 1, Client2, Server, and Env. We introduce the env module, repre- 
senting the environment, so that we can explicitly model failures that occur between Clientl and 
the Server and between Client2 and the Server. (The module has two state variables f ailurel and 
f ailure2. Each one of them can be independently set to 1. Once a variable is set to 1, it remains 
at that value for the rest of the run.) 

The module server has two beliefs, belief 1 and belief2. The server module in AFS-2 is 
otherwise similar to the server module in AFS-1. 

The module client is also similar as that for AFS-1. The only difference is that in AFS-2 a 
client may also send an update message to the server when it believes its file is valid. This difference 
is captured in the third to last line in the definition of out in the client module. 

We show the SMV output for AFS-2 in Figure 7 in Appendix I. SMV indicates that the cache 
coherence invariant is true. The total time used is less than .5 seconds and the number of reachable 
states is 7776. 

3.3.     Coda 

Mummert's extension to the Coda protocol is complicated by the addition of a new type of cached 
data, called a volume (Section 4.3). This addition leads to a richer state space, more state tran- 
sitions, and more cases in which failures can arise (see Figure 9 of Appendix II). For example, 
whereas AFS-2 has only three classes of runs, Mummert's Coda protocol has fifteen. SMV takes 
less than one second to check 43,684 reachable states. 

4.     Discussion: Different Kinds of Abstractions 

What made it possible for us to use model checking in our case study is that we chose different 
abstraction mappings to apply to the real system. We certainly did not check the actual C code 
that implements AFS-1 or AFS-2, but then the level at which we would want to verify a protocol 
like cache coherence is much higher than the code level; if the design is incorrect or incomplete 
(misses some cases) then the code is apt to reflect those mistakes and omissions. Designs, especially 
for distributed systems protocols, are thus good subjects for model checking. 

In this section we explain in more detail some of the abstraction mappings that we applied, 
which can be used more generally in other settings. We exploit (1) the form of the property, <f> to 
be satisfied, (2) domain-specific knowledge, and (3) problem-specific knowledge. 

4.1.     Exploiting the Form of <j> 

In a real instance of a distributed file system like Andrew or Coda, there are an unbounded number 
of files, clients, and servers.   To analyze the state space of a real instance would be beyond the 

11 



capability of any model checker today. 

If 4> is in the form of \/x.P(x) then if for any instance, a, proving P(a) will let us deduce <f> by 
the generalization rule from logic: 

P(a) 
Vx.P(x) 

Our cache coherence invariant (CC) is stated as "for all clients, for all servers, for all files ...." 
Thus, for example, for AFS-1, we simply successively apply the generalization rule three times 
upon proving the property for a model with just one client, one server, and one file.1 

4.2.     Exploiting Domain-Specific Knowledge 

In our domain of distributed systems, we need to worry about failures and transmission delays. 
First, we abstract from different types of failures like crashed nodes and downed communication 
links since our protocols act the same regardless of the type of failure. We do, however, need to 
model that a failure may occur; we use an environment machine (env) to model this possibility. We 
also need to model that clients and servers can detect a failure; we use the f ailurel and f ailure2 
parameters for this purpose. 

Second, transmission delay in conjunction with failures complicate reasoning about correctness 
in distributed systems. During the interval in which a message is traveling, the sender may have 
made some state change which will render the correctness condition false until the receiver processes 
the message and changes its state. Transmission delay is loosely bounded by the timeout period 
used by the underlying communication protocol, denoted by ß. It also takes time for clients and 
servers to detect failures. The interval between the occurrence of a failure and its detection, denoted 
by r, defines a window of vulnerability. To bound the failure detection interval, clients and servers 
probe each other periodically, and declare failures if messages time out. Let p be the probe interval 
and assume that clients and servers use the same probe interval, but do not necessarily probe each 
other at the same time. Then the failure detection interval is at most r = p + ß. 2 

We abstract from the exact times that contribute to r and model this interval as a single step in 
a state machine. This interpretation lets us characterize the correctness condition, CC", in terms 
of the next-state temporal logic operator (AX) rather than the original, simpler CC. If transmission 
were instantaneous and there were no failures, there would be no need for modeling r since client 
and server beliefs could be updated simultaneously. 

'Roscoe and MacCarthy make a similar point in their work on model checking (using FDR) data-independent 
properties of concurrent processes [26]. We agree with their comment that further work on a formal justification is 
needed. 

2In Coda r is composed of a probe interval of 10 minutes and a message timeout of 15 seconds. 
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4.3.     Exploiting Problem-Specific Knowledge 

We use (f> to drive the choice of "appropriate" abstractions. For example, if 4> is a property about 
an integer, x, we may care only that x is negative, positive, or zero. We can define an abstraction 
function that maps an infinite set of values to three values. Or, if (/> is a property about an integer 
set, s, we may care only about whether the set is empty or not; we may not care at all about what 
its elements are. We can define an abstraction function that maps an infinite set of set values to 

two values. 

In our problem of cache coherence between clients and servers, the property </) that we want 
to verify is that the client's beliefs about the validity of cached files are consistent with a server's 
beliefs. We let 4> guide us in determining what details of the real system we can safely ignore. 

First, we abstract from the clients' caches, i.e., sets of files. Since we have simplified our model 
to handle just one file, we need only model whether the cache, C, is empty or not, i.e, C = 0 or C 
= {/}. This abstraction gives us two cases to consider instead of an exponential number of cases 

(2n) for an unbounded number, ra, of files. 

Second, we need only represent the belief a client has about the cached file. We do not need 
to model sets of beliefs (given we have only one file about which to have a belief). For example, 
for AFS-2, in reality, we might have a cache, C, and a belief set B (for file /), that ranges over 0 
and {valid(f)}. Rather than two state variables, we need only one (belief), and rather than four 
possibilities (2 X 2), we need represent only three. We define a (partial) abstraction function, A, 
that maps a pair (C,B) to a belief in {valid,nofile, suspect}: 

({f},{valid(f)}) H^ valid 
( $,{valid(f)} ) H->- -L (unreachable case) 

( {/}>0 ) h^ suspect 
(0,0) ■->■ nofile 

Third, we do not even need to model the file itself since we do not care at all about the contents 

(value) of the file. We would if we needed to compare the values of two different files or extract 
information about the file based on its value. Thus, we identify the transmission of the file with the 

transmission of the message about the file; for example, in AFS-2, the val message can be thought 
of as abstractly containing the file itself as well as the status about its validity. 

Fourth, we abstract from the type of data cached. In the AFS protocols, the types include 
files and directories. For our analysis, however, that there are different types of data is completely 
irrelevant to the correctness of the protocol. We use the generic term "file" to stand for any kind of 
data. (In the Coda file system example, a third type, volumes, is treated specially, and thus must 
be modeled explicitly; as mentioned earlier, it is this new data type that complicates the Coda 

protocol.) 

Fifth, we abstract from the notion of validity, which is determined by the recency of a file. Sup- 
pose as in the implementation, recency is determined by comparing the totally ordered timestamps 
associated with files. For any pair of timestamped files, ft\ and /t2, we can determine whether one 
is more recent by comparing their timestamps, 21 < 22; but since this always returns true or false, 
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we can model recency, and hence validity, as a boolean variable representing whether a file is valid 
or not. This abstraction appears explicitly in the way we use the valid-file boolean variable in 
the server module, letting the server nondeterministically choose between the two possibilities. 

Finally, we abstract from individual runs of protocol. We consider classes of runs, categorized 
by a protocol's sets of initial and final states. For our most complex example, this reduces the 
number of cases to consider from forty-four to fifteen [25]. 

5.     Related Work 

Model checking originated with Clarke and Emerson's work in 1981 [8]. As mentioned in the 
introduction, it has already proven to be extremely successful in debugging hardware [4, 14, 23, 
10, 9, 3]. Tool support for model checking includes SMV [22], FDR [16], COSPAN [19], and the 
Concurrency Workbench [11]. There are more and more documented case studies; for example, the 
proceedings of the 1995 Workshop of Industrial-Strength Formal Techniques contains four model 
checking case study papers [17]. 

We are not the first to explore the use of model checking in the software domain. Three other 
approaches complement ours and each other. Since they are all recent (dated 1993-94), we expect 
that over time results from one approach will carry over to the others. 

• Atlee and Gannon follow a specification-language based approach [2]. They verify safety 
properties for event-driven systems described by the SCR tabular requirements language. 
Their case studies include an automobile cruise control system and a water-level monitoring 
system. They show how to represent any specification written in a subset of SCR as a finite 
state machine. They use an extended version of SMV for their model checker. 

• Jackson explores the richness of types in software systems. State variables for hardware (and 
SCR) are of simple types like boolean, but in software they range over more complex type 
like sets, graphs, and relations. He exploits symmetry in mathematical relations to reduce 
the state space; he shows how to model check Z specifications, which is essentially based on 
his relational calculus [21]. 

• Allen and Garlan's use of model checking focuses at the level of software architecture, a 
level of abstraction far above the real system, but again where many design flaws can be 
detected. They use FDR to detect deadlocks in software architectures described in the Wright 
architectural description language [1]. Wright is based on a subset of CSP, and thus it leaves 
states completely uninterpreted. 

Our approach complements all three of the above since in each case, the researchers first build 
some finite model of the real system and express it in terms of SCR, Z, or Wright. In doing so, 
they implicitly apply the kinds of abstractions we used in our examples. By restricting themselves 
to a specific language, they have the advantage of avoiding having to define different abstractions 
per problem, since they do this mapping once and for all. In our approach, we let <j> drive the 
choice of abstractions and simply express our models directly in terms of SMV input. We have 
the advantages of bypassing the "intermediate" specification language translation step, and of not 
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being restricted to the domain of systems that a given specification language is most suited for 
describing. Thus, our focus is on finding "appropriate" abstractions that work across different 
domains and different problems, not on checking models expressed in a particular specification 

language. 

Finally, Cheung and Kramer's two-step analysis approach applied to reasoning about large- 
scale distributed systems is similar in spirit to ours [7]. They use dataflow analysis as a way to 
approximate a system's behavior and then contextual analysis to do an exhaustive search of the 

resulting state space. 

6.     Conclusions and Future Directions 

Model checking has the significant advantage over more traditional forms of software verification 
in that much of the hard work is done automatically by the machine. Moreover, both the inputs 
and the results of model checking tools are straightforward to understand by non-experts: since a 
model checker's interface is well-defined and it is straightforward to provide its expected inputs, we 
can readily use it as a "black box." This suggests that for gaining assurance about software, model 
checking can become a technology that is much more broadly accessible to practitioners than other 

techniques. 

The choice of what abstractions to apply takes some good judgment. After all, we could define 
a model of a system that is so abstract that any property would be trivially satisfied or that would 
allow any possible concrete realization. Further research is needed to characterize more formally 

what makes an abstraction "good." 

In our own work, toward making progress both in demonstrating feasibility and in understand- 
ing characteristics of good abstractions, we plan to push on more examples. We are currently 
exploring how to use model checking to validate recovery protocols [12] for redundant disk arrays, 
in particular for the RAID Level-5 architecture and its successors. Our primary goal is to pro- 
vide more convincing evidence to systems designers and builders that formal reasoning tools are 
ready for day-to-day use. As a useful by-product, we expect to identify other kinds of abstractions 

appropriate to apply to real software systems. 

We are optimistic about the future of model checking software systems. One way to measure 
the practicality of model checking is by how easy it is to teach and learn. The second author did 
the model checking case study in this paper as part of her senior honor's thesis. In CMU's Master's 
of Software Engineering core course on Analysis of Software Artifacts, we have students do a two- 
week project using SMV. Clarke regularly offers a graduate-level course on model checking, and 
some CMU faculty have even proposed the idea of teaching model checking in undergraduate core 

courses [5]. 
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Appendix I: SMV Input and Output for AFS-2 

Figures 6-8. 
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MODULE main 

VAR 
Client1 : client (Server.outl, Env.failurel); 
Client2 : client (Server.out2, Env.failure2); 
Server :  server (Client1.out, Client2.out, Env.failurel, Env.failure2); 

Env   :  env; 
SPEC AG ((Server.beliefl = nocall) -> 
AX ((Clientl.belief = nofile) I (Clientl.belief = suspect))) 

MODULE server(inputl, input2, failurei, failure2) 

VAR 
outl : { 0, val, inval }; 
out2 : { 0, val, inval }; 
beliefl : { valid, nocall }; 
belief2 : { valid, nocall }; 
validFilel  : boolean; 

validFile2 : boolean; 

ASSIGN 
validFilel := { 0,1 }; 

validFile2 := { 0,1 }; 
init(belief1) := nocall; 

next(belief1) := 

case 
failurei : nocall; 
(beliefl = nocall) & (inputl = fetch) : valid; 
(beliefl = nocall) & (inputl = validate) & validFilel : valid; 
(beliefl = nocall) & (inputl = validate) & IvalidFilel : nocall; 

(beliefl = valid) & (input2 = update) : nocall; 

1 : beliefl; 
esac; 
init(outl) := 0; 
next(outl) := 

case 
failurei : 0; 
(beliefl = nocall) & (inputl 

(beliefl = nocall) & (inputl 
(beliefl = nocall) & (inputl 

(beliefl = valid) & (input2 = 

1 : 0; 
esac; 
init(belief2) := nocall; 

next(belief2) := 

case 
failure2 : nocall; 
(belief2 = nocall) & (input2 
(belief2 = nocall) & (input2 
(belief2 = nocall) & (input2 = validate) & !validFile2 

(belief2 = valid) & (inputl = update) : nocall; 

1 : belief2; 

esac; 

= fetch) : val; 
= validate) & validFilel : 
= validate) & IvalidFilel 

update) : inval; 

val; 
: inval; 

fetch) : valid; 
validate) & validFile2 valid; 

: nocall; 
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init(out2) := 0; 

next(out2) := 

case 
failure2 : 0; 
(belief2 = nocall) & (input2 = fetch) : val; 
(belief2 = nocall) & (input2 = validate) & validFile2 : val; 

(belief2 = nocall) & (input2 = validate) & !validFile2 : inval; 

(belief2 = valid) & (inputl = update) : inval; 

1 : 0; 
esac; 

MODULE client(input, failure) 

VAR 
out : { 0, fetch, validate, update }; 

belief : { valid, suspect, nofile }; 

ASSIGN 
init(belief) := { nofile, suspect }; 

next(belief) := 
case 
failure : suspect; 
(belief = nofile) &  (input = val) : valid; 
(belief = suspect) & (input = val) : valid; 

(belief = suspect) & (input = inval) : nofile; 
(belief = valid) & (input = inval) : nofile; 

1: belief; 

esac; 
init(out) := 0; 
next(out) := 

case 
(belief = nofile) : fetch, 0; 

(belief = suspect) : validate, 0; 
(belief = valid) : update; 

1 : 0; 
esac; 

MODULE env 

VAR 
failurel : boolean; 
failure2 : boolean; 
ASSIGN 
init(failurel) := 0; 
next(failurel) := 

case 
(failurel : { 0,1 }; 
1 : 1; 

esac; 
init(failure2) := 0; 
next(failure2) := 

case 
!failure2 : 0,1; 

1 : 1; 
esac; 

Figure 6: SMV Input for AFS2 
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— specification AG (Server.belief1 = nocall -> AX (Clien... is true 

resources used: 
user time: 0.316667 s, system time: 0.1s 

BDD nodes allocated: 1784 

Bytes allocated: 917504 
BDD nodes representing transition relation: 452 + 1 
reachable states: 7776 (2' 12.9248) out of 82944 (2* 16.3399) 

Figure 7: SMV Output for AFS-2 

— specification AG (Clientl.belief = valid -> Server.bei... is false 

— as demonstrated by the following execution sequence 

state 1.1: 
Clientl.out = 0 
Clientl.belief = nofile 

Client2.out = 0 
Client2.belief = nofile 

Server.outl = 0 
Server.out2 = 0 
Server.belief1 = nocall 
Server.belief2 = nocall 
Server.validFilel = 0 
Server.validFile2 = 0 
Env.failurel = 0 
Env.failure2 = 0 

state 1.2: 
Clientl.out = fetch 

Client2.out = fetch 

state 1.3: 
Server.outl = val 
Server.out2 = val 
Server.belief1 = valid 

Server.belief2 = valid 

state 1.4: 
Clientl.belief = valid 

Client2.belief = valid 

Server.outl = 0 
Server.out2 = 0 

state 1.5: 
Clientl.out = update 
Client2.out = update 

state 1.6: 
Server.outl =  inval 
Server.out2 = inval 
Server.belief1 = nocall 
Server.belief2 = nocall 

Figure 8: SMV Counterexample for Incorrect Invariant for AFS-2 
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Appendix II: State Transition Graphs for Coda 
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Client 

Vvalidate & 
IvalidFV 

Fvalidate & 
IvalidFV 

Each node is labeled by the value of the belief 
about the file and the value of the belief about 
the volume. Each arc is labeled by the name of 
the message received by the client/server. 

Vvalidate & IvalidFV 

Server 

Vfetch 

Figure 9: State Transition Diagrams for Coda 
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